The Effect of Quantized Magnetic Flux Lines on the Dynamics of Superfluid Neutron Star Cores

نویسندگان

  • T. Sidery
  • M. A. Alpar
چکیده

We investigate dynamical coupling timescales of a neutron star’s superfluid core, taking into account the interactions of quantized neutron vortices with quantized flux lines of the proton superconductor in addition to the previously considered scattering of the charged components against the spontaneous magnetization of the neutron vortex line. We compare the cases where vortex motion is constrained in different ways by the array of magnetic flux tubes associated with superconducting protons. This includes absolute pinning to and creep across a uniform array of flux lines. The effect of a toroidal arrangement of flux lines is also considered. The inclusion of a uniform array of flux tubes in the neutron star core significantly decreases the timescale of coupling between the neutron and proton fluid constituents in all cases. For the toroidal component, creep response similar to that of the inner crust superfluid is possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flux-Vortex Pinning and Neutron Star Evolution

G. Srinivasan et al. (1990) proposed a simple and elegant explanation for the reduction of the neutron star magnetic dipole moment during binary evolution leading to low mass X-ray binaries and eventually to millisecond pulsars: Quantized vortex lines in the neutron star core superfluid will pin against the quantized flux lines of the proton superconductor. As the neutron star spins down in the...

متن کامل

Magnetic fields within color superconducting neutron star cores

We discuss the Meissner effect for a color superconductor formed by cold dense quark matter. Though color and ordinary electromagnetism are broken in a color superconductor, there is a linear combination of the photon and a gluon that remains massless. Consequently, a color superconducting region may be penetrated by an external magnetic field. We show that at most a small fraction of the magne...

متن کامل

ar X iv : a st ro - p h / 05 05 07 3 v 1 4 M ay 2 00 5 Neutron Star Superfluidity , Dynamics and Precession

Received ; accepted – 2 – ABSTRACT Basic rotational and magnetic properties of neutron superfluids and proton superconductors in neutron stars are reviewed. The modes of precession of the neutron superfluid are discussed in detail. We emphasize that at finite temperature , pinning of superfluid vortices does not offer any constraint on the precession. Any pinning energies can be surmounted by t...

متن کامل

Neutrino pair emission due to scattering of electrons off fluxoids in superfluid neutron star cores

We study the emission of neutrinos, resulting from the scattering of electrons off magnetic flux tubes (fluxoids) in the neutron star cores with superfluid (superconducting) protons. In the absence of proton superfluidity (T ≥ Tcp), this process transforms into the well known electron synchrotron emission of neutrino pairs in a locally uniformmagnetic fieldB, with the neutrino energy loss rate ...

متن کامل

Type II superconductivity and magnetic flux transport in neutron stars

The transition to a type II proton superconductor which is believed to occur in a cooling neutron star is accompanied by changes in the equation of hydrostatic equilibrium and by the formation of proton vortices with quantized magnetic flux. Analysis of the electron Boltzmann equation for this system and of the proton supercurrent distribution formed at the transition leads to the derivation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009